首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27075篇
  免费   987篇
  国内免费   602篇
电工技术   725篇
综合类   973篇
化学工业   5495篇
金属工艺   4695篇
机械仪表   971篇
建筑科学   773篇
矿业工程   263篇
能源动力   258篇
轻工业   1630篇
水利工程   110篇
石油天然气   340篇
武器工业   123篇
无线电   2035篇
一般工业技术   7353篇
冶金工业   514篇
原子能技术   286篇
自动化技术   2120篇
  2024年   20篇
  2023年   144篇
  2022年   276篇
  2021年   514篇
  2020年   354篇
  2019年   312篇
  2018年   364篇
  2017年   488篇
  2016年   841篇
  2015年   1470篇
  2014年   1630篇
  2013年   1624篇
  2012年   1524篇
  2011年   2780篇
  2010年   2224篇
  2009年   2180篇
  2008年   1796篇
  2007年   1670篇
  2006年   1183篇
  2005年   1216篇
  2004年   1213篇
  2003年   1253篇
  2002年   1117篇
  2001年   428篇
  2000年   327篇
  1999年   345篇
  1998年   242篇
  1997年   208篇
  1996年   156篇
  1995年   129篇
  1994年   98篇
  1993年   66篇
  1992年   61篇
  1991年   37篇
  1990年   36篇
  1989年   33篇
  1988年   32篇
  1987年   19篇
  1986年   24篇
  1985年   24篇
  1984年   25篇
  1983年   14篇
  1982年   20篇
  1981年   33篇
  1980年   72篇
  1979年   8篇
  1978年   9篇
  1977年   7篇
  1975年   5篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
91.
Multilayer graphene (MLG) shows an attractive prospect for the demanding engineering applications. This paper reports the mechanical and tribological properties of MLG reinforced Ni3Al matrix composites (NMCs) under dry sliding at varying sliding speed. The hardness and elastic modulus of the NMCs are significantly influenced with MLG content. It is found that the hardness and elastic modulus of the NMCs are found to be increased by increasing MLG content up to 1.0 wt.%, while decreased when MLG content is above 1.0 wt.%. Tribological experiments suggest that MLG can dramatically improve the wear resistance and decrease the friction coefficient of the NMCs. Such marked improvement of wear resistance is attributed to the reinforcing mechanisms of MLG, such as crack deflection and pull-out, and reduction of friction coefficient is related to the formation of a tribofilm on the sliding contact surface.  相似文献   
92.
Composites of epoxy resin with high percentage of silica fillers (66%) are designed to improve mechanical and electrical properties of transformers used in railway application. FTIR, (DRX and FE-SEM) and absorption/desorption phenomena are used to investigate the structure, the morphology and the diffusion of water in the microcomposites, respectively. Good dispersion of silica filler with size less than 10 μm was assessed by SEM, although some clustering (agglomerates) of greater than 1 μm was observed. The absorption water in the microcomposite obeys to the first Fickian law and shows saturation water of 0.6%. The calculation of the diffusion coefficient of water leads to a value of 2.9*10−12 m2 s−1 in the studied system. Relaxation times of α-relaxation and ionic conduction relaxation processes are determined. A correlation is observed between the ionic conductivity and dielectric relaxation processes. The dc-current behavior shows a change in the conduction mechanism from electronic conduction below the Tg to ionic conduction above the Tg. Shallow traps of 0.54 eV and deep traps of 2.21 eV are determined below and above the Tg, respectively. The TSC analysis confirms the VFT behavior of the α-relaxation of the microcomposite as obtained by the dielectric spectroscopy.  相似文献   
93.
The inhibition effects of bacillomycin D on the growth of Aspergillus ochraceus and the production of ochratoxin A (OTA) in food samples were investigated. The mycelia growth and sporulation were completely inhibited by 30 μg/mL of bacillomycin D. Microscopic morphological changes such as the distortion of hyphae and the disruption of spores at 20 μg/mL of bacillomycin D were significantly observed. The use of bacillomycin D resulted in cell damage, nucleic acids and proteins divulge, and more production of reactive oxygen species (ROS), and all these factors actively contributed to the promotion of apoptosis of A. ochraceus. In addition, 90 μg/g of bacillomycin D completely inhibited the growth of A. ochraceus and the production of OTA in food samples. Our results suggested that bacillomycin D showed a significant antifungal activity against A. ochraceus that could be used as a potential natural antimicrobial to control food contamination and ensure food safety.  相似文献   
94.
The experimental investigation is focused on the thermo-mechanical behaviour of thin concrete panels reinforced with GFRP rebars. The considered thin panels (thickness of 4 cm) were exposed to increasing temperature and bending loading. These concrete elements are typical for low bearing function concrete layers in façade claddings. The influence of two aspects was studied: the concrete cover and the external surface of rebars. The heating condition was such that the temperature of the internal GFRP rebars reached about the transition temperature of the resins. This allowed to verify the variation of the deformability and the load carrying capacity of the panels with post-heating bending tests. As main outcome, the imposed temperature did not generate evident degradation of the GFRP reinforcement and of its adhesion to the concrete, while a reduction of the initial global stiffness was measured.  相似文献   
95.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
96.
Various methods have been developed to monitor the health and strain state of carbon fiber reinforced polymers, each with a unique set of pros and cons. This research assesses the use of piezoresistive sensors for in situ strain measurement of carbon fiber and other composite structures in multidirectional laminates. The piezoresistive sensor material and the embedded circuitry are both evaluated. For the piezoresistive sensor, a conductive nickel nanocomposite sensor is compared with the piezoresistivity of the carbon fiber itself. For the circuit, the use of carbon fibers already present in the structure is compared with the use of nickel coated carbon fiber. Successful localized strain sensing is demonstrated for several sensor and circuitry configurations. Numerous engineering applications are possible in the ever-growing field of carbon-composites.  相似文献   
97.
The addition of nanoparticles has been reported as an option to increase the fracture toughness of thermosetting polymers without compromising the stiffness. In this paper, alumina or carbon nanotubes (CNTs), in three different concentrations, were dispersed in an epoxy resin. Mechanical properties were measured through tensile test and the results indicate increases for all nanocomposites, with a maximum for the addition of 0.5% of CNTs (17% in elastic modulus and 22% in ultimate stress). Using TEM images, it was possible to identify the nanostructures and mechanisms that lead to improved stiffness. Fracture toughness tests and SEM images showed that cavitation – shear yielding (for epoxy/alumina nanocomposites) and crack bridging – pull-out (for epoxy/CNTs nanocomposites) are the predominant mechanisms.  相似文献   
98.
This paper presents an effective approach to achieve efficient electrical actuation and monitoring of shape recovery based on patterned Au electrodes on shape memory polymer (SMP). The electrically responsive shape recovery behavior was characterized and monitored by the evolution change in electrical resistance of patterned Au electrode. Both electrical actuation and temperature distribution in the SMP have been improved by optimizing the Au electrode patterns. The electrically actuated shape recovery behavior and temperature evolution during the actuation were monitored and characterized. The resistance changes could be used to detect beginning/finishing points of the shape recovery. Therefore, the Au electrode not only significantly enhances the electrical actuation performance to achieve a fast electrical actuation, but also enables the resistance signal to detect the free recovery process.  相似文献   
99.
This paper presents the Kriging model approach for stochastic free vibration analysis of composite shallow doubly curved shells. The finite element formulation is carried out considering rotary inertia and transverse shear deformation based on Mindlin’s theory. The stochastic natural frequencies are expressed in terms of Kriging surrogate models. The influence of random variation of different input parameters on the output natural frequencies is addressed. The sampling size and computational cost is reduced by employing the present method compared to direct Monte Carlo simulation. The convergence studies and error analysis are carried out to ensure the accuracy of present approach. The stochastic mode shapes and frequency response function are also depicted for a typical laminate configuration. Statistical analysis is presented to illustrate the results using Kriging model and its performance.  相似文献   
100.
Two types of nano/micro sized mica powders for polymer composites, muscovite and phlogopite, were tested for their sound absorption capabilities. Acoustical performance was correlated to surface energy analysis and powder rheology testing. Inverse gas chromatography (iGC) was used to determine the surface energy, with the dominant component being the dispersive component. This reflected the non-polar, hydrophobic, character of the micas. The determined yield locus and Mohr's circles indicated that the material with the highest packing density exhibited more free flowing powder characteristics, compared with the lower packing density materials, which exhibited a greater cohesive powder flow behaviour. All tested mica powders were sensitive to aeration and become fluidised. Based on the acoustical measurements the worst sound absorption performance was found for the highest packing density material exhibiting the highest magnitude of the longitudinal elastic coefficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号